The Power of Integrated Abstraction of Data-centric Human/Machine Computations

Atsuyuki Morishima, Norihide Shinagawa
Shoji Mochizuki
University of Tsukuba
Outline

1. Background
2. CyLog
3. Prototype Development
4. Related Work and Discussions
The Complementary Nature of Human/Machine Computations

- High-speed computation without errors
- Never forget things
- Work without a break
- Pattern Recognition
- Common Sense
- Gather Information Offline
- Create new ideas
Many “Crowdsourcing Systems (Applications)” have shown their success [Doan, Ramakrishnan, Halevy 2011]

- ESP Games
- Q&A Services
- reCAPTCHA
- Video Sharing
- ...
Our Challenge: Develop a Systematic Framework to Quickly Build Programs for the Integration of Human/Machine Computations
A Natural (and Important) Question

What is a good *abstraction* to describe (and program) such applications of human/machine computation?

- ESP Games
- Q&A Services
- reCAPTCHA
- Video Sharing
- ...

A possibility: Since they are *data-centric*, *database languages* can be a starting point to develop such an abstraction.
Our idea: Extend the DB Abstraction to deal with *Cybernetic Dataspaces* (1/2)

Application Program

Codes in Data-centric Declarative Language

Codes in Other Languages

Traditional dataspace

Query

Data Generation And Input
Our Idea: Extend the DB Abstraction to deal with *Cybernetic Dataspaces* (2/2)

- **Cybernetic dataspace**
 - Data Generation
 - And Input

- **Traditional dataspace**
 - Application Program
 - Codes in Data-centric Declarative Language
 - Codes in Other Languages

- **Cybernetic dataspace**
 - Query
 - Data Generation And Input
Integrated Abstraction of Data-centric Human/Machine Computations: An Example of CyLog Rule

metadata(x, y) :- img(x), keyword(x, y), inDict(y)

Evaluated by data
Evaluated by humans
Evaluated by data
Many Ongoing Projects

• We saw exciting ongoing projects in publications in 2011
 – Qurk [MIT]
 – sCOOP/hQuery [Stanford & Santa-Cruz]
 – CrowdDB [UC Berkeley, ETH Zurich]
...

• They try to achieve database functions in the presence of human data-sources
How is CyLog Different?

• Introduces the concept of *rational data source*, as a new type of Web data source

• *Open Predicates/Attributes* to model the interaction with people

• *Data games* for obtaining appropriate values

• Our first international presentation was in 2010!*

Outline

1. Background
2. CyLog
3. Prototype Development
4. Related Work and Discussions
Point 1: Datalog-like Declarative Language

metadata(x, y) :- img(x), keyword(x, y), inDict(y)

Evaluated by machine
Evaluated by humans
Evaluated by machine
Point 2: Open Predicates (1/3) - CWA

Parent(pam, bob)
Parent(bob, pat)
Parent(kate, pat)
Parent(kate, ann)
Ancestor(X,Y) <- Parent(X,Y),
Ancestor(X,Z) <- Parent(X, Y), Ancestor(Y, Z)

?- Ancestor(pam, pat)
yes

?- Ancestor(pam, ann)
No
Point 2: Open Predicates (2/3)

Parent(pam, bob)
Parent(bob, pat)
Parent(kate, pat)
Parent(kate, ann)

Ancestor(X,Y) <- Parent(X,Y),
Ancestor(X,Z) <- Parent(X,Y), Ancestor(Y,Z)
Parent(X,W)/open <- Parent(X,Y), Parent(Z,Y), Parent(Z,W)

?- Ancestor(pam, pat)
yes

?- Ancestor(pam, ann)
Yes!
Point 2: Open Predicates (3/3) - Details

• Can have open attributes
 \[\text{keyword}(x,y)/\text{open} \leftarrow \text{img}(x) \]

• Possible to \textit{actively} ask people
 \[\text{keyword}(x,y)/\text{open}\{\text{group}\}:\text{active} \]

• Can be an open “fact”
 \[\text{img}(x)/\text{open} \]

• Open for a specified set of humans
 \[\text{keyword}(x,y)/\text{open}\{\text{group}\} \]
Point 3: Data Games (1/2)

Challenge: Obtaining appropriate values in the presence of human data sources.

Approaches:
- Majority Voting
- Probabilistic Approach*
- Approach Using Item-Response Theory*
- Data Games

*Mentioned in [Parameswaran et al. 2011]
Point 3: Data Games (2/2)

- A concept to connect data flows with reward systems
- Models each human as a *rational data source* who behaves rationally according to the rewards given in the games.

- This framework gives a possibility to use the game theory as an analysis tool.
- We provide some built-in data games to define the reward and aggregation to produce values.
Games

A game can be described with players, their options, and payoffs.

Ex1) payoff matrix of a simple ESP Game

<table>
<thead>
<tr>
<th>Player A \ B</th>
<th>Term A</th>
<th>Term B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term A</td>
<td>(1, 1)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>Term B</td>
<td>(0, 0)</td>
<td>(1, 1)</td>
</tr>
</tbody>
</table>

Solution

Ex2) payoff matrix of a Q&A Service Game

<table>
<thead>
<tr>
<th>Player A \ B</th>
<th>Best Answer</th>
<th>Worst Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Answer</td>
<td>(15, 15)</td>
<td>(30, 0)</td>
</tr>
<tr>
<td>Second Best Answer</td>
<td>(0,30)</td>
<td>(0,30)</td>
</tr>
</tbody>
</table>

Solution
Human-as-a-data-source

- Accept every input “as is”
- Implicit human-id attribute keywords (hid, img, keyword)
- Key attributes are important

CyLog

QL

The DB view has the values computed by combining the inputs from the crowd
Game Aggregations

Duplicate Game

<table>
<thead>
<tr>
<th>Player A \ B</th>
<th>Term A</th>
<th>Term B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term A</td>
<td>(1, 1)</td>
<td>(0,0)</td>
</tr>
<tr>
<td></td>
<td>Term A</td>
<td></td>
</tr>
<tr>
<td>Term B</td>
<td>(0,0)</td>
<td>(1,1)</td>
</tr>
<tr>
<td></td>
<td>Term B</td>
<td></td>
</tr>
</tbody>
</table>

PathTable p

<table>
<thead>
<tr>
<th>Order</th>
<th>Player</th>
<th>Rel</th>
<th>Action</th>
<th>Action to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>MetadataInput</td>
<td>Term A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>MetadataInput</td>
<td>Term A</td>
<td>B</td>
</tr>
</tbody>
</table>
Built-in Game Aggregations

The following game aggregations are different to each other in what are chosen for the output values and in how payoff points are given to players.

- Duplicates (Values given by more than one player)
- Majority (Values given by the largest number of people)
- Unique (Values given by only one person)
- Intersection (Values given by everyone)
- Union (All values given by any player)
- First (The value given first)
Discussions on Data Games

• The data game concept is widely applicable beyond the real “games,” since there are many applications in which connecting dataflow with feedback to people is the key.

• How to deal with payoff points depends on applications

• We believe that the data game is a general concept
 – The games can be used to obtain the “correct” values,
 – They can be used to obtain values chosen based on other criteria
 – The data games can handle wider situations beyond the AMT-style crowdsourcing setting.
Example: Little Known Hot Spots

- Show (possibly a part of) the list of restaurant
- Label each restaurant as
 - L1: Good
 - L2: Not good
 - L3: I have never been there
- Give more points to people who labeled as “Good” those restaurants that are good on average but labeled as “I have never been there” by many people
Example: The ESP game in CyLog

Data:

MetadataInput(file, keyword)/open <- File(file)
Metadata(file, g(file):keyword)/game:g(file) <- File(File)

Game:

\[g(file) @ \text{time(10)}: \text{Duplicate}, \{\text{MetadataInput}\} \]
An Attempt to Define the Semantics of Cylog Programs

Program P
 - Facts
 - Rules
 - Strategies S1
 - Strategies S2
 - Best Strategies S3
 - Best Strategies S4
 - Rational Consequences
 - The Semantics of P
 - Rational Consequences
Outline

1. Background
2. CyLog
3. Prototype System
4. Related Work and Discussions
• The current working version of our prototype system provides a default function to generate HTML forms for open predicates
• External functions are allowed to implement complex algorithms and customized user interface
• Modules to work with AMT is under development
Outline

1. Background
2. CyLog
3. Prototype System
4. Related Work and Discussions
Recent Work: Qurk, sCOOP/hQuery, CrowdDB

- **Common or Similar Points**
 - Declarative approach
 - Concepts similar to open predicates/attributes (hPred, CNULL,...)

- **Points Unique to CyLog**
 - Introduce rational data sources
 - Data games as a means to obtain appropriate values
 - Takes the human-as-a-data-sources approach to incorporate data games in the language.
Related Work (2/3)

Collective Knowledge base [Richardson, Domingos 2003]

• Common or Similar Points
 – Rules and facts can be added by humans
 – Feedback to contributors

• Points Unique to CyLog
 – Designed for data-centric applications in the presence of human data resources
 – Open predicates/attributes, data games
Related Work (3/3)

Turkalytics [Heymann, Garcia-Molina, 2011]
– An analytics tool for Human Computation

Can be used to tune and optimize CyLog programs when executed with the Amazon Mechanical Turk.
Open Problems

• Optimization issues
• Advanced mechanisms for player selection
• Development of various types of data-games
• Design theory
• Definitive rationality

Some of the above are addressed in the related work
The Current Status

- Updating and extending the syntax of CyLog
 - The basic idea is the same
 - Nest Structure for the concise description
 - Support of Status values for complex games

- Developing a software platform open to public
Summary

• CyLog: Datalog-like *declarative* language
• Introduces the concept of *rational data source* as a new type of Web data source
• *Open predicates/attributes* to interact with people
• *Data games* for obtaining appropriate values

The FusionCOMP Project:
http://www.kc.tsukuba.ac.jp/~mori/isbuilder/